Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Respir J ; 61(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36922030

RESUMO

BACKGROUND: COVID-19 is associated with a dysregulated immune response but it is unclear how immune dysfunction contributes to the chronic morbidity persisting in many COVID-19 patients during convalescence (long COVID). METHODS: We assessed phenotypical and functional changes of monocytes in COVID-19 patients during hospitalisation and up to 9 months of convalescence following COVID-19, respiratory syncytial virus or influenza A. Patients with progressive fibrosing interstitial lung disease were included as a positive control for severe, ongoing lung injury. RESULTS: Monocyte alterations in acute COVID-19 patients included aberrant expression of leukocyte migration molecules, continuing into convalescence (n=142) and corresponding with specific symptoms of long COVID. Long COVID patients with unresolved lung injury, indicated by sustained shortness of breath and abnormal chest radiology, were defined by high monocyte expression of C-X-C motif chemokine receptor 6 (CXCR6) (p<0.0001) and adhesion molecule P-selectin glycoprotein ligand 1 (p<0.01), alongside preferential migration of monocytes towards the CXCR6 ligand C-X-C motif chemokine ligand 16 (CXCL16) (p<0.05), which is abundantly expressed in the lung. Monocyte CXCR6 and lung CXCL16 were heightened in patients with progressive fibrosing interstitial lung disease (p<0.001), confirming a role for the CXCR6-CXCL16 axis in ongoing lung injury. Conversely, monocytes from long COVID patients with ongoing fatigue exhibited a sustained reduction of the prostaglandin-generating enzyme cyclooxygenase 2 (p<0.01) and CXCR2 expression (p<0.05). These monocyte changes were not present in respiratory syncytial virus or influenza A convalescence. CONCLUSIONS: Our data define unique monocyte signatures that define subgroups of long COVID patients, indicating a key role for monocyte migration in COVID-19 pathophysiology. Targeting these pathways may provide novel therapeutic opportunities in COVID-19 patients with persistent morbidity.


Assuntos
COVID-19 , Influenza Humana , Lesão Pulmonar , Humanos , Monócitos/metabolismo , Quimiocinas CXC/metabolismo , Receptores Virais/metabolismo , Receptores CXCR6 , Receptores de Quimiocinas/metabolismo , Síndrome Pós-COVID-19 Aguda , Ligantes , Convalescença , Receptores Depuradores/metabolismo , Quimiocina CXCL16 , Gravidade do Paciente
2.
Semin Immunopathol ; 45(3): 281-294, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36346451

RESUMO

Acute ischaemic and haemorrhagic stroke account for significant disability and morbidity burdens worldwide. The myeloid arm of the peripheral innate immune system is critical in the immunological response to acute ischaemic and haemorrhagic stroke. Neutrophils, monocytes, and dendritic cells (DC) contribute to the evolution of pathogenic local and systemic inflammation, whilst maintaining a critical role in ongoing immunity protecting against secondary infections. This review aims to summarise the key alterations to myeloid immunity in acute ischaemic stroke, intracerebral haemorrhage (ICH), and subarachnoid haemorrhage (SAH). By integrating clinical and preclinical research, we discover how myeloid immunity is affected across multiple organ systems including the brain, blood, bone marrow, spleen, and lung, and evaluate how these perturbations associate with real-world outcomes including infection. These findings are placed in the context of the rapidly developing field of human immunology, which offers a wealth of opportunity for further research.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Humanos , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral Hemorrágico/complicações , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/patologia
3.
Discov Immunol ; 2(1): kyad005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38567065

RESUMO

The murine bone marrow has a central role in immune function and health as the primary source of leukocytes in adult mice. Laboratory mice provide a human-homologous, genetically manipulable and reproducible model that has enabled an immeasurable volume of high-quality immunological research. However, recent research has questioned the translatability of laboratory mouse research into humans and proposed that the exposure of mice to their wild and natural environment may hold the key to further immunological breakthroughs. To date, there have been no studies providing an in-depth cellular analysis of the wild mouse bone marrow. This study utilized wild mice from an isolated island population (Isle of May, Scotland, UK) and performed flow cytometric and histological analysis to characterize the myeloid, lymphoid, hematopoietic progenitor, and adipocyte compartments within the wild mouse bone marrow. We find that, compared to laboratory mouse bone marrow, the wild mouse bone marrow differs in every cell type assessed. Some of the major distinctions include; a smaller B cell compartment with an enriched presence of plasma cells, increased proportions of KLRG1+ CD8+ T cells, diminished CD11b expression in the myeloid lineage and a five-fold enlargement of the eosinophil compartment. We conclude that the wild mouse bone marrow is dramatically distinct from its laboratory counterparts, with multiple phenotypes that to our knowledge have never been observed in laboratory models. Further research into these unique features may uncover novel immunological mechanisms and grant a greater understanding of the role of the immune system in a natural setting.

4.
Immunology ; 167(4): 558-575, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35881080

RESUMO

Post-stroke infection is a common complication of stroke that is associated with poor outcome. We previously reported that stroke induces an ablation of multiple sub-populations of B cells and reduces levels of immunoglobulin M (IgM) antibody, which coincides with the development of spontaneous bacterial pneumonia. The loss of IgM after stroke could be an important determinant of infection susceptibility and highlights this pathway as a target for intervention. We treated mice with a replacement dose of IgM-enriched intravenous immunoglobulin (IgM-IVIg) prior to and 24 h after middle cerebral artery occlusion (MCAO) and allowed them to recover for 2- or 5-day post-surgery. Treatment with IgM-IVIg enhanced bacterial clearance from the lung after MCAO and improved lung pathology but did not impact brain infarct volume. IgM-IVIg treatment induced immunomodulatory effects systemically, including rescue of splenic plasma B cell numbers and endogenous mouse IgM and IgA circulating immunoglobulin concentrations that were reduced by MCAO. Treatment attenuated MCAO-induced elevation of selected pro-inflammatory cytokines in the lung. IgM-IVIg treatment did not increase the number of lung mononuclear phagocytes or directly modulate macrophage phagocytic capacity but enhanced phagocytosis of Staphylococcus aureus bioparticles in vitro. Low-dose IgM-IVIg contributes to increased clearance of spontaneous lung bacteria after MCAO likely via increasing availability of antibody in the lung to enhance opsonophagocytic activity. Immunomodulatory effects of IgM-IVIg treatment may also contribute to reduced levels of damage in the lung after MCAO. IgM-IVIg shows promise as an antibacterial and immunomodulatory agent to use in the treatment of post-stroke infection.


Assuntos
Infecções Bacterianas , Acidente Vascular Cerebral , Camundongos , Animais , Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos , Imunoglobulina M , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Bactérias , Pulmão
5.
Front Immunol ; 13: 943159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874681

RESUMO

Ageing-related delays and dysregulated inflammation in wound healing are well-documented in both human and animal models. However, cellular and molecular changes underlying this impairment in healing progression are not fully understood. In this study, we characterised ageing-associated changes to macrophages in wounds of young and aged mice and investigated transcriptomic differences that may impact the progression of wound healing. Full-thickness wounds created on the dorsum of C57BL/6J young and aged mice were excised on Days 3 and 7 post-wounding for analysis by immunohistochemistry, flow cytometry, and RNA sequencing. Our data revealed that macrophages were significantly reduced in aged wounds in comparison to young. Functional transcriptomic analyses showed that macrophages from aged wounds exhibited significantly reduced expression of cell cycle, DNA replication, and repair pathway genes. Furthermore, we uncovered an elevated pro-inflammatory gene expression program in the aged macrophages correlated with poor inflammation resolution and excessive tissue damage observed in aged wounds. Altogether, our work provides insights into how poorly healing aged wounds are phenotypically defined by the presence of macrophages with reduced proliferative capacity and an exacerbated inflammatory response, both of which are pathways that can be targeted to improve healing in the elderly.


Assuntos
Pele , Cicatrização , Idoso , Animais , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pele/metabolismo , Cicatrização/genética
6.
Proc Natl Acad Sci U S A ; 119(15): e2119893119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385354

RESUMO

The emergence of SARS-CoV-2 triggering the COVID-19 pandemic ranks as arguably the greatest medical emergency of the last century. COVID-19 has highlighted health disparities both within and between countries and will leave a lasting impact on global society. Nonetheless, substantial investment in life sciences over recent decades has facilitated a rapid scientific response with innovations in viral characterization, testing, and sequencing. Perhaps most remarkably, this permitted the development of highly effective vaccines, which are being distributed globally at unprecedented speed. In contrast, drug treatments for the established disease have delivered limited benefits so far. Innovative and rapid approaches in the design and execution of large-scale clinical trials and repurposing of existing drugs have saved many lives; however, many more remain at risk. In this review we describe challenges and unmet needs, discuss existing therapeutics, and address future opportunities. Consideration is given to factors that have hindered drug development in order to support planning for the next pandemic challenge and to allow rapid and cost-effective development of new therapeutics with equitable delivery.


Assuntos
Tratamento Farmacológico da COVID-19 , Pandemias , Vacinas contra COVID-19 , Desenvolvimento de Medicamentos , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
7.
Cerebrovasc Dis ; 51(4): 461-472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34983048

RESUMO

INTRODUCTION: Stroke is characterized by deleterious oxidative stress. Selenoprotein enzymes are essential endogenous antioxidants, and detailed insight into their role after stroke could define new therapeutic treatments. This systematic review aimed to elucidate how blood selenoprotein concentration and activity change in the acute phase of stroke. METHODS: We searched PubMed, EMBASE, and Medline databases for studies measuring serial blood selenoprotein concentration or activity in acute stroke patients or in stroke patients compared to non-stroke controls. Meta-analyses of studies stratified by the type of stroke, blood compartment, and type of selenoprotein measurement were conducted. RESULTS: Eighteen studies and data from 941 stroke patients and 708 non-stroke controls were included in this review. Glutathione peroxidase (GPx) was the only identified selenoprotein, and its activity was most frequently measured. Results from 12 studies and 693 patients showed that compared to non-stroke controls in acute ischaemic stroke patients, the GPx activity increased in haemolysate (standardized mean difference [SMD]: 0.27, 95% CI: 0.07-0.47) but decreased in plasma (mean difference [MD]: -1.08 U/L, 95% CI: -1.94 to -0.22) and serum (SMD: -0.54, 95% CI: -0.91 to -0.17). From 4 identified studies in 106 acute haemorrhagic stroke patients, the GPx activity decreased in haemolysate (SMD: -0.40, 95% CI: -0.68 to -0.13) and remained unchanged in plasma (MD: -0.10 U/L, 95% CI: -0.81 to 0.61) and serum (MD: -5.00 U/mL, 95% CI: -36.17 to 26.17) compared to non-stroke controls. Results from studies assessing the GPx activity in the haemolysate compartment were inconsistent and characterized by high heterogeneity. CONCLUSIONS: Our results suggest a reduction of the blood GPx activity in acute ischaemic stroke patients, a lack of evidence regarding a role for GPx in haemorrhagic stroke patients, and insufficient evidence for other selenoproteins.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral Hemorrágico , AVC Isquêmico , Selenoproteínas , Antioxidantes , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/patologia , Glutationa Peroxidase , Acidente Vascular Cerebral Hemorrágico/diagnóstico , Acidente Vascular Cerebral Hemorrágico/patologia , Humanos , AVC Isquêmico/diagnóstico , AVC Isquêmico/patologia , Selênio , Selenoproteínas/metabolismo
8.
J Exp Med ; 219(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37559179

RESUMO

Helminth parasites are well known to have co-evolved a diverse arsenal of immunomodulatory factors to aid their persistence following infection. In this issue, Karo-Atar et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20212311) demonstrate that products released by the gut-dwelling helminth Heligmosomoides polygyrus barkeri modify intestinal stem cells into a "revival" state, which is associated with a loss of helminth-expelling secretory cell types from the epithelium.


Assuntos
Helmintos , Parasitos , Animais , Células-Tronco
9.
iScience ; 25(1): 103672, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34957382

RESUMO

Inflammatory cytokines and chemokines (CC) drive COVID-19 pathology. Yet, patients with similar circulating CC levels present with different disease severity. Here, we determined 171 microRNAomes from 58 hospitalized COVID-19 patients (Cohort 1) and levels of 25 cytokines and chemokines (CC) in the same samples. Combining microRNA (miRNA) and CC measurements allowed for discrimination of severe cases with greater accuracy than using miRNA or CC levels alone. Severity group-specific associations between miRNAs and COVID-19-associated CC (e.g., IL6, CCL20) or clinical hallmarks of COVID-19 (e.g., neutrophilia, hypoalbuminemia) separated patients with similar CC levels but different disease severity. Analysis of an independent cohort of 108 patients from a different center (Cohort 2) demonstrated feasibility of CC/miRNA profiling in leftover hospital blood samples with similar severe disease CC and miRNA profiles, and revealed CCL20, IL6, IL10, and miR-451a as key correlates of fatal COVID-19. These findings highlight that systemic miRNA/CC networks underpin severe COVID-19.

10.
Med ; 2(6): 720-735.e4, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33821250

RESUMO

BACKGROUND: Emerging studies indicate that some coronavirus disease 2019 (COVID-19) patients suffer from persistent symptoms, including breathlessness and chronic fatigue; however, the long-term immune response in these patients presently remains ill-defined. METHODS: Here, we describe the phenotypic and functional characteristics of B and T cells in hospitalized COVID-19 patients during acute disease and at 3-6 months of convalescence. FINDINGS: We report that the alterations in B cell subsets observed in acute COVID-19 patients were largely recovered in convalescent patients. In contrast, T cells from convalescent patients displayed continued alterations with persistence of a cytotoxic program evident in CD8+ T cells as well as elevated production of type 1 cytokines and interleukin-17 (IL-17). Interestingly, B cells from patients with acute COVID-19 displayed an IL-6/IL-10 cytokine imbalance in response to Toll-like receptor activation, skewed toward a pro-inflammatory phenotype. Whereas the frequency of IL-6+ B cells was restored in convalescent patients irrespective of clinical outcome, the recovery of IL-10+ B cells was associated with the resolution of lung pathology. CONCLUSIONS: Our data detail lymphocyte alterations in previously hospitalized COVID-19 patients up to 6 months following hospital discharge and identify 3 subgroups of convalescent patients based on distinct lymphocyte phenotypes, with 1 subgroup associated with poorer clinical outcome. We propose that alterations in B and T cell function following hospitalization with COVID-19 could affect longer-term immunity and contribute to some persistent symptoms observed in convalescent COVID-19 patients. FUNDING: Provided by UKRI, Lister Institute of Preventative Medicine, the Wellcome Trust, The Kennedy Trust for Rheumatology Research, and 3M Global Giving.


Assuntos
COVID-19 , Linfócitos T CD8-Positivos , Citocinas , Humanos , Interleucina-10 , Interleucina-6 , SARS-CoV-2
11.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33635312

RESUMO

Hematopoietic stem cells reside in the bone marrow, where they generate the effector cells that drive immune responses. However, in response to inflammation, some hematopoietic stem and progenitor cells (HSPCs) are recruited to tissue sites and undergo extramedullary hematopoiesis. Contrasting with this paradigm, here we show residence and differentiation of HSPCs in healthy gingiva, a key oral barrier in the absence of overt inflammation. We initially defined a population of gingiva monocytes that could be locally maintained; we subsequently identified not only monocyte progenitors but also diverse HSPCs within the gingiva that could give rise to multiple myeloid lineages. Gingiva HSPCs possessed similar differentiation potentials, reconstitution capabilities, and heterogeneity to bone marrow HSPCs. However, gingival HSPCs responded differently to inflammatory insults, responding to oral but not systemic inflammation. Combined, we highlight a novel pathway of myeloid cell development at a healthy barrier, defining a gingiva-specific HSPC network that supports generation of a proportion of the innate immune cells that police this barrier.


Assuntos
Gengiva/citologia , Gengiva/imunologia , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/imunologia , Animais , Medula Óssea/metabolismo , Feminino , Hematopoese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Bucal/citologia , Mucosa Bucal/imunologia , RNA-Seq/métodos , Análise de Célula Única/métodos
12.
Front Immunol ; 11: 1830, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117327

RESUMO

Helminth parasites are effective in biasing Th2 immunity and inducing regulatory pathways that minimize excessive inflammation within their hosts, thus allowing chronic infection to occur whilst also suppressing bystander atopic or autoimmune diseases. Multiple sclerosis (MS) is a severe autoimmune disease characterized by inflammatory lesions within the central nervous system; there are very limited therapeutic options for the progressive forms of the disease and none are curative. Here, we used the experimental autoimmune encephalomyelitis (EAE) model to examine if the intestinal helminth Heligmosomoides polygyrus and its excretory/secretory products (HES) are able to suppress inflammatory disease. Mice infected with H. polygyrus at the time of immunization with the peptide used to induce EAE (myelin-oligodendrocyte glycoprotein, pMOG), showed a delay in the onset and peak severity of EAE disease, however, treatment with HES only showed a marginal delay in disease onset. Mice that received H. polygyrus 4 weeks prior to EAE induction were also not significantly protected. H. polygyrus secretes a known TGF-ß mimic (Hp-TGM) and simultaneous H. polygyrus infection with pMOG immunization led to a significant expansion of Tregs; however, administering the recombinant Hp-TGM to EAE mice failed to replicate the EAE protection seen during infection, indicating that this may not be central to the disease protecting mechanism. Mice infected with H. polygyrus also showed a systemic Th2 biasing, and restimulating splenocytes with pMOG showed release of pMOG-specific IL-4 as well as suppression of inflammatory IL-17A. Notably, a Th2-skewed response was found only in mice infected with H. polygyrus at the time of EAE induction and not those with a chronic infection. Furthermore, H. polygyrus failed to protect against disease in IL-4Rα-/- mice. Together these results indicate that the EAE disease protective mechanism of H. polygyrus is likely to be predominantly Th2 deviation, and further highlights Th2-biasing as a future therapeutic strategy for MS.


Assuntos
Antígenos de Helmintos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Receptores de Superfície Celular/imunologia , Infecções por Strongylida/imunologia , Células Th2/imunologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nematospiroides dubius/imunologia
13.
Sci Immunol ; 5(51)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943497

RESUMO

COVID-19 pathogenesis is associated with an exaggerated immune response. However, the specific cellular mediators and inflammatory components driving diverse clinical disease outcomes remain poorly understood. We undertook longitudinal immune profiling on both whole blood and peripheral blood mononuclear cells (PBMCs) of hospitalized patients during the peak of the COVID-19 pandemic in the UK. Here, we report key immune signatures present shortly after hospital admission that were associated with the severity of COVID-19. Immune signatures were related to shifts in neutrophil to T cell ratio, elevated serum IL-6, MCP-1 and IP-10, and most strikingly, modulation of CD14+ monocyte phenotype and function. Modified features of CD14+ monocytes included poor induction of the prostaglandin-producing enzyme, COX-2, as well as enhanced expression of the cell cycle marker Ki-67. Longitudinal analysis revealed reversion of some immune features back to the healthy median level in patients with a good eventual outcome. These findings identify previously unappreciated alterations in the innate immune compartment of COVID-19 patients and lend support to the idea that therapeutic strategies targeting release of myeloid cells from bone marrow should be considered in this disease. Moreover, they demonstrate that features of an exaggerated immune response are present early after hospital admission suggesting immune-modulating therapies would be most beneficial at early timepoints.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Imunidade Inata , Monócitos/imunologia , Pneumonia Viral/imunologia , Adulto , Idoso , Biomarcadores/sangue , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Ciclo-Oxigenase 2/imunologia , Ciclo-Oxigenase 2/metabolismo , Progressão da Doença , Feminino , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Mediadores da Inflamação/sangue , Mediadores da Inflamação/imunologia , Antígeno Ki-67/imunologia , Antígeno Ki-67/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Estudos Prospectivos , SARS-CoV-2 , Índice de Gravidade de Doença , Reino Unido/epidemiologia
14.
Front Immunol ; 11: 486, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265931

RESUMO

Infants are more likely to develop lethal disseminated forms of tuberculosis compared with older children and adults. The reasons for this are currently unknown. In this study we test the hypothesis that antimycobacterial function is impaired in infant alveolar macrophages (AMϕs) compared with those of adults. We develop a method of obtaining AMϕs from healthy infants using rigid bronchoscopy and incubate the AMϕs with live virulent Mycobacterium tuberculosis (Mtb). Infant AMϕs are less able to restrict Mtb replication compared with adult AMϕs, despite having similar phagocytic capacity and immunophenotype. RNA-Seq showed that infant AMϕs exhibit lower expression of genes involved in mycobactericidal activity and IFNγ-induction pathways. Infant AMϕs also exhibit lower expression of genes encoding mononuclear cell chemokines such as CXCL9. Our data indicates that failure of AMϕs to contain Mtb and recruit additional mononuclear cells to the site of infection helps to explain the more fulminant course of tuberculosis in early life.


Assuntos
Sistema Imunitário/crescimento & desenvolvimento , Lactente , Macrófagos Alveolares/fisiologia , Mycobacterium tuberculosis , Adulto , Idoso , Líquido da Lavagem Broncoalveolar , Quimiocinas/biossíntese , Quimiocinas/genética , Quimiotaxia/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Ativação de Macrófagos , Pessoa de Meia-Idade , Mycobacterium tuberculosis/fisiologia , Fagocitose , RNA Mensageiro/biossíntese , RNA-Seq
15.
J Invest Dermatol ; 139(7): 1583-1592, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30703358

RESUMO

Chronic inflammation is a hallmark of impaired healing in a plethora of tissues, including skin, and is associated with aging and diseases such as diabetes. Diabetic chronic skin wounds are characterized by excessive myeloid cells that display an aberrant phenotype, partially mediated by stable intrinsic changes induced during hematopoietic development. However, the relative contribution of myeloid cell-intrinsic factors to chronic inflammation versus aberrant signals from the local environmental was unknown. Moreover, identification of myeloid cell intrinsic factors that contribute to chronic inflammation in diabetic wounds remained elusive. Here we show that Gr-1+CD11b+ myeloid cells are retained specifically within the presumptive granulation tissue region of the wound at a higher density in diabetic mice and associate with endothelial cells at the site of injury with a higher frequency than in nondiabetic mice. Adoptive transfer of myeloid cells demonstrated that aberrant wound retention is due to myeloid cell intrinsic factors and not the local environment. RNA sequencing of bone marrow and wound-derived myeloid cells identified Selplg as a myeloid cell intrinsic factor that is deregulated in chronic wounds. In vivo blockade of this protein significantly accelerated wound healing in diabetic mice and may be a potential therapeutic target in chronic wounds and other chronic inflammatory diseases.


Assuntos
Inflamação/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Cicatrização , Transferência Adotiva , Animais , Células da Medula Óssea/metabolismo , Antígeno CD11b/genética , Doença Crônica , Diabetes Mellitus Experimental , Células Endoteliais/metabolismo , Feminino , Masculino , Camundongos , Fenótipo , Análise de Sequência de RNA
16.
Proc Natl Acad Sci U S A ; 115(42): 10738-10743, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30279177

RESUMO

γδ T cells are enriched at barrier sites such as the gut, skin, and lung, where their roles in maintaining barrier integrity are well established. However, how these cells contribute to homeostasis at the gingiva, a key oral barrier and site of the common chronic inflammatory disease periodontitis, has not been explored. Here we demonstrate that the gingiva is policed by γδ T cells with a T cell receptor (TCR) repertoire that diversifies during development. Gingival γδ T cells accumulated rapidly after birth in response to barrier damage, and strikingly, their absence resulted in enhanced pathology in murine models of the oral inflammatory disease periodontitis. Alterations in bacterial communities could not account for the increased disease severity seen in γδ T cell-deficient mice. Instead, gingival γδ T cells produced the wound healing associated cytokine amphiregulin, administration of which rescued the elevated oral pathology of tcrδ-/- mice. Collectively, our results identify γδ T cells as critical constituents of the immuno-surveillance network that safeguard gingival tissue homeostasis.


Assuntos
Anfirregulina/metabolismo , Homeostase , Boca/imunologia , Periodontite/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia , Subpopulações de Linfócitos T/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Boca/metabolismo , Periodontite/metabolismo , Periodontite/patologia , Subpopulações de Linfócitos T/metabolismo
17.
J Exp Med ; 215(6): 1507-1518, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29789388

RESUMO

A defining feature of resident gut macrophages is their high replenishment rate from blood monocytes attributed to tonic commensal stimulation of this site. In contrast, almost all other tissues contain locally maintained macrophage populations, which coexist with monocyte-replenished cells at homeostasis. In this study, we identified three transcriptionally distinct mouse gut macrophage subsets that segregate based on expression of Tim-4 and CD4. Challenging current understanding, Tim-4+CD4+ gut macrophages were found to be locally maintained, while Tim-4-CD4+ macrophages had a slow turnover from blood monocytes; indeed, Tim-4-CD4- macrophages were the only subset with the high monocyte-replenishment rate currently attributed to gut macrophages. Moreover, all macrophage subpopulations required live microbiota to sustain their numbers, not only those derived from blood monocytes. These findings oppose the prevailing paradigm that all macrophages in the adult mouse gut rapidly turn over from monocytes in a microbiome-dependent manner; instead, these findings supplant it with a model of ontogenetic diversity where locally maintained subsets coexist with rapidly replaced monocyte-derived populations.


Assuntos
Antígenos CD4/metabolismo , Intestinos/citologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Animais Recém-Nascidos , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Microbiota , Monócitos/metabolismo , Fenótipo , Receptores CCR2/metabolismo , Transcrição Gênica
18.
Pflugers Arch ; 469(3-4): 527-539, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28283748

RESUMO

Monocyte-derived mononuclear phagocytes, particularly macrophages, are crucial to maintain gastrointestinal homeostasis in the steady state but are also important for protection against certain pathogens. However, when uncontrolled, they can promote immunopathology. Broadly two subsets of macrophages can be considered to perform the vast array of functions to complete these complex tasks: resident macrophages that dominate in the healthy gut and inflammation-elicited (inflammatory) macrophages that derive from circulating monocytes infiltrating inflamed tissue. Here, we discuss the features of resident and inflammatory intestinal macrophages, complexities in identifying and defining these populations and the mechanisms involved in their differentiation. In particular, focus will be placed on describing their unique ontogeny as well as local gastrointestinal signals that instruct specialisation of resident macrophages in healthy tissue. We then explore the very different roles of inflammatory macrophages and describe new data suggesting that they may be educated not only by the gut microenvironment but also by signals they receive during development in the bone marrow. Given the high degree of plasticity of gut macrophages and their multifaceted roles in both healthy and inflamed tissue, understanding the mechanisms controlling their differentiation could inform development of improved therapies for inflammatory diseases such as inflammatory bowel disease (IBD).


Assuntos
Homeostase/fisiologia , Inflamação/patologia , Intestinos/patologia , Intestinos/fisiologia , Macrófagos/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Doenças Inflamatórias Intestinais/patologia
19.
Immunity ; 42(6): 1130-42, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26070484

RESUMO

Tissue-infiltrating Ly6C(hi) monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DCs) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals after tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function.


Assuntos
Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Mucosa Intestinal/imunologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Antígenos Ly/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células da Medula Óssea/parasitologia , Diferenciação Celular , Células Cultivadas , Interferon gama/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Mucosa Intestinal/parasitologia , Células Matadoras Naturais/parasitologia , Leucócitos Mononucleares/parasitologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , Especificidade de Órgãos/imunologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
20.
Nat Commun ; 6: 6920, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25908537

RESUMO

Dendritic cells (DCs) direct CD4(+) T-cell differentiation into diverse helper (Th) subsets that are required for protection against varied infections. However, the mechanisms used by DCs to promote Th2 responses, which are important both for immunity to helminth infection and in allergic disease, are currently poorly understood. We demonstrate a key role for the protein methyl-CpG-binding domain-2 (Mbd2), which links DNA methylation to repressive chromatin structure, in regulating expression of a range of genes that are associated with optimal DC activation and function. In the absence of Mbd2, DCs display reduced phenotypic activation and a markedly impaired capacity to initiate Th2 immunity against helminths or allergens. These data identify an epigenetic mechanism that is central to the activation of CD4(+) T-cell responses by DCs, particularly in Th2 settings, and reveal methyl-CpG-binding proteins and the genes under their control as possible therapeutic targets for type-2 inflammation.


Assuntos
Proteínas de Ligação a DNA/imunologia , Células Dendríticas/imunologia , Regulação da Expressão Gênica/genética , RNA Mensageiro/metabolismo , Células Th2/imunologia , Alérgenos , Animais , Linfócitos T CD4-Positivos/imunologia , Polaridade Celular , Imunoprecipitação da Cromatina , Metilação de DNA , Proteínas de Ligação a DNA/genética , Ensaio de Imunoadsorção Enzimática , Epigênese Genética , Citometria de Fluxo , Hipersensibilidade/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Pyroglyphidae/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...